Quick access:

Vous êtes ici :

  1. Home
  2. Our activities
  3. Studies and Research
  4. Divisions and Laboratories
  5. Process Engineering (selected section)

Process Engineering

The mission of the "Process Engineering" department is to research, study and promote prevention solutions in response to problems of exposure to toxic agents in their various forms (gas, liquid, solid or aerosol). The department favors upstream technical prevention solutions that will lead to a control of the source of pollution.

IP Facilities

The department has many analytical means (mass spectrometer, gas chromatography, inductively coupled plasma mass spectrometry, high performance liquid chromatography) and aeraulic metrology (PIV, LDA...). It also relies on the use of new technologies (3D scanner, real-time sensor networks, video...). It has test benches for the study of source suction systems, ventilation, reactors and separators from the laboratory scale up to pilot or even industrial sizes when necessary.
 

The department has test benches that can go up to pilot sizes in order to get closer to the real operating conditions. As an example photo of an aerosol particles scavenging by water drops set-up.

Spatial and temporal analyses of chemical exposures

The laboratory's mission is to identify and evaluate occupational situations presenting or likely to present problems of exposure to chemical pollutants and to specify the origin of these problems. To do so, it relies on important analytical skills and means (gas chromatography, mass spectrometer, High Performance Liquid Chromatography...) and on the use of various technologies after having adapted them to the field of prevention: specific or non-specific chemical exposure detectors, video, trajectography... This mission of evaluating chemical exposures is generally based on the identification of problems, the analysis of needs, the search for internal or external collaborations, the global and local evaluation of exposures in work situations and the identification of the phenomena at the origin of exposure problems.

Atmosphere generation chambers for chemical compounds of known concentration allow the sensors to be calibrated in real time.

Publications

  • GALLAND B., DIRRENBERGER P., GERARDIN K., LEVILLY R., MARTIN P., DUQUENNE P. - Analyse spatio-temporelle des expositions professionnelles aux agents chimiques et biologiques. Hygiène et sécurité du travail, 2020, n°260, pp. 50-56 (P2020-170)
  • DIRRENBERGER P. - Méthanisation (partie 1) : Principe, paramètres et polluants émis – Etat de l’art. TSM, 9, 2020, pp. 15-30 - https://astee-tsm.fr/numeros/tsm-9-2020/dirrenberger-1/ (P2020-029)
  • DIRRENBERGER P. - Méthanisation (partie 2) : Technologies de digestion et procédés utilisés – Etat de l’art. TSM, 9, 2020, pp. 33-56 - https://astee-tsm.fr/numeros/tsm-9-2020/dirrenberger-2/ (P2020-030)
  • CREPY M.N., BOMAN A., ZIMMERMANN F. - Protective Gloves. (Gants de protection). Kanerva’s Occupational Dermatology, 2019, https://doi.org/10.1007/978-3-319-40221-5_113-2 (P2018-182)
  • LECLER M.T., ZIMMERMANN F., SILVENTE E., MASSON A., MORELE Y., REMY A., CHOLLOT A. - Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination (Améliorer l'environnement de travail dans le secteur du recyclage des lampes fluorescentes en optimisant l'élimination du mercure). Waste Management 76 (2018) 250-260 (P2018-026)
  • LARA J., ZIMMERMANN F., DROLET D., HANSEN C., CHOLLOT A., 
    MONTA N. - The use of the Hansen solubility parameters in the selection of protective polymeric materials resistant to chemicals (Utilisation des paramètres de solubilités de Hansen dans la sélection des matériaux polymères de protection aux produits chimiques). International Journal of Current Research, 2017, Vol. 9, 03, pp.47860-47867 (P2017-038)

Aeraulic engineering

The laboratory's mission is to propose preventive solutions, based on ventilation, to control employee exposure to hazardous substances and heat. Its main activities concern the development of methods that can be used for the evaluation and design of air purification systems for industrial and tertiary sector workstations and premises. Particular attention is paid to the evaluation and reduction of emissions of hazardous substances from machinery (portable machines, public works machinery, additive manufacturing, etc.). The laboratory takes into account the reality of field situations in its approach: multiple and interacting capture and ventilation equipment, effect of external and internal disturbances and interferences on the efficiency of systems (intermittent actions of wind, air currents, pressure variations, door openings ...) based on aeraulic metrology on site and in the laboratory (PIV, LDA ...) and simulations of computational fluid mechanics.
 

 

  • Ventilated cabin for the study of the influence of internal disturbances (opening of doors or windows, passage of an operator in front of the fume cupboard) on the operation of laboratory fume cupboards. The aeraulic measurements are carried out by PIV.

  • Although simple in appearance, the cabins used to study ventilation systems are equipped above with complex technical infrastructures to control flows, temperatures and hygrometry. Nicolas Veith, technician.

  • Although simple in appearance, the cabins used to study ventilation systems are equipped above with complex technical infrastructures to control flows, temperatures and hygrometry. Nicolas Veith, technician.

Publications

  • ROBERT L., GUICHARD R., KLINGLER J., COCHET V., MANDIN C. - Indoor air quality in shopping and storage areas. (Qualité de l’air intérieur dans les commerces et lieux de stockage). Indoor Air, 2020, 1-14, http://dx.doi.org/10.1111/ina.12783 (IF: 4,71) (P2020-049)

  • BELUT E., SÁNCHEZ JIMÉNEZ A., MEYER-PLATH A., JOONAS KOIVISTO A., K. KOPONEN I., C. Ø. JENSEN A., MACCALMAN L., TUINMAN I., FRANSMAN W., DOMAT M., BIVOLAROVA M., VAN TONGEREN8 M. - Indoor dispersion of airborne nano and fine particles: main factors affecting spatial and temporal distribution in the frame of exposure modeling (Dispersion des particules nanométriques et ultrafines dans l’air intérieur : facteurs principaux agissant sur la distribution spatio-temporelle dans un contexte de modélisation des expositions). Indoor Air. 2019;00:1–14, DOI: 10.1111/ina.12579 (P2019-039)

  • GUICHARD R. - Assessment of an improved Random Flow Generation method to predict unsteady wind pressures on an isolated building using Large-Eddy Simulation (Evaluation d’une méthode de génération d’écoulement synthétique pour prédire la pression instationnaire du vent sur un bâtiment isolé par Simulation des Grandes Echelles). Journal of Wind Engineering & Industrial Aerodynamics 189 (2019) 304-313 (P2019-064)

  • KELLER F.X., CHATA F. - Characterization of wood dust emission from hand-held woodworking machines (Caractérisation des émissions de poussières de bois par les machines portatives). Journal of Occupational and Environmental Hygiene, 2018, vol. 15, n°1, 13-23 (P2016-017)

  • CHERRIER G., BELUT E., GERARDIN F., TANIERE A., RIMBERT N. - Aerosol particles scavenging by a droplet: microphysical modeling in the Greenfield gap (Capture de particules d’aérosol par une goutte : modélisation microphysique dans le Greenfield Gap). Atmospheric Environment 166 (2017) 519-530 (P2017-075)

  • BONTHOUX F. - Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding (Etudes des facteurs influents sur l’efficacité de captage des torches MIG/MAG aspirantes). Ann. Occup. Hyg., 2016, 1–10 (P2015-122)

Process and purification of pollutants

The laboratory's mission is to search for prevention solutions involving the design of industrial installations and equipment : 

  • processes using chemical products, 
  • treatment processes for captured pollutants, 
  • breathing apparatus. 

The aim is to evaluate their performance from a health and safety point of view based on laboratory and on-site studies. The laboratory then proposes innovative solutions or technically and economically acceptable improvements, or defines the limits for the use of protective means such as personal protective equipment. The level of action can go as far as the implementation of semi-industrial pilot projects in order to validate on site and in real conditions the effectiveness of the prevention tools developed. 

Experimental device for the purification of VOCs by membrane separation and chemical reaction.

Experimental device for treating diesel engine exhaust gases by adsorption.

Publications

  • BENSABATH T., LE M.D., MONNIER H., GLAUDE P.A. - Polycyclic aromatic hydrocarbon (PAH) formation during acetylene pyrolysis in tubular reactor under low pressure carburizing conditions (Formation d'hydrocarbures aromatiques polycycliques (HAP) au cours de la pyrolyse à l'acétylène dans un réacteur tubulaire dans des conditions de cémentation gazeuse à basse pression). Chemical Engineering Science 202 (2019) 84–94 (P2019-059)
  • KHIROUNI N., CHARVET A., THOMAS D., BEMER D. - Regeneration of dust filters challenged with metallic nanoparticles: influence of atmospheric aging. (Régénération des filtres à particule exposés aux nanoparticules métalliques : influence du vieillissement atmosphérique). Process Safety and Environmental Protection 138 (2020) 1-8 (IF: 4,384) (P2020-039)
  • CARDENASSARABIA C., MARSTEAU S., SIGOT L., VALLIERES C., LATIFI A. - Analysis of an Industrial Adsorption Process based on Ammonia Chemisorption: Modeling and Simulation. (Analyse d'un procédé industriel d'adsorption basé sur la chimisorption de l'ammoniac : modélisation et simulation). Proceedings of the 30th ESCAPE30, May 24-27, 2020, Milan, 625-630 (P2020-132)
  • MARSTEAU S., GALLAND B., MARCHAL M. - Ammonia removal using activated carbons: Vehicle cab air cleaning systems performances (Epuration de l’ammoniac par des charbons actifs : performances des systèmes équipant les cabines d’engins).
  • 13th International Conference on the Fundamentals of Adsorption - FOA 2019, 26-31 Mai 2019, CAIRNS, AUSTRALIE (C2019-056)
  • CHAZELET S., WILD P., SILVENTE E., EYPERT-BLAISON C. - Workplace Respiratory Protection Factors during Asbestos Removal Operations (Facteur de protection en situation de travail lors d'opérations de désamiantage). Annals of Work Exposures and Health, Volume 62, Issue 5, 28 May 2018, 613–621 (P2017-076)
  • CHARVET A., WINGERT L., BARDIN-MONNIER N., PACAULT S., FOURNIER F., BEMER D., THOMAS D. - Multi-staged granular beds applied to the filtration of ultrafine particles: An optimization of collector diameters (Application des lits granulaires multicouches à la filtration des particules ultrafines : optimisation du diamètre des collecteurs). Powder Technology 342 (2019) 341–347, available online 3 octobre 2018 (P2018-131)
  • GERARDIN F., CLOTEAUX A., MIDOUX N. - Modeling of variations in nitrogen trichloride concentration over time in swimming pool water. Process Safety and Environmental Protection 94 (2015) 452-462 (P2014-142)
Last update on 09/07/2021