Physiological effects of single shocks on the hand-arm system – a randomized experiment

Elke Ochsmann, Alexandra Corominas Cishek, Benjamin Ernst, Uwe Kaulbars, Hans Lindell

1) Institut für Arbeitsmedizin, Prävention und betriebliches Gesundheitsmanagement, Universität zu Lübeck, UKSH Campus Lübeck,

2) Bereich Vibration, Institut für Arbeitsschutz der DGUV (IFA) der DGUV, Sankt Augustin,

3) Ingenieurbüro, Bonn

4) Rise Swerea, Mölndal, Schweden

Sponsoring: DGUV-Forschungsförderung
authors declare no conflict of interest
positive vote of ethics committee
Introduction

• **Exposure:**
 - Shock exposures on the hand-arm system at work and during spare time quite common
 - Definition of single shocks not yet regulated
 - Often combination of vibration and shock

• **Health effect:**
 - Hazardous aspect of single shocks
 - Human/individual factors
 - White finger disease, arthrosis, sensineurological symptoms

• **Cause-effect:**
 - Same hazard for each outcome
 - Workplace safety: filter used in DIN standards

Sources pictures: www.bauredakteur.de, www.dguv.de
Aim

• to assess physiological effects (vibration perception and skin temperature) of low-frequency single shocks

• ... in exposure groups with different shock repetition rates

• ... in a control group with a „random signal“, spectrum vibration

• To explore correlation patterns between exposure parameters and outcomes (vibration perception and skin temperature)
Randomized controlled shaker experiment

exposure/control groups:
3 single shock exposure groups (repetition rate: 1 s⁻¹, 4 s⁻¹, 20 s⁻¹),
1 control group (RandomSignal, RS, used for testing quality of anti-vibration gloves),

exposure duration: 20 min, 4 x 5 min sequences, 5th sequence of random vibration

Shaker: Ling Dynamic Systems, V 726, Royston, GB

other factors defining exposure/control
• $a_{h,w} = 10 \text{ m/s}^2$ for all exposures/controls
• $A(8)$ 4 sequences = 1,77 m/s² after 4 x 5 min shock exposure
• $A(8)$ 5 sequences = 2,04 m/s² after additional random signal exposure
Randomized controlled shaker experiment

Body posture:
• Standing
• Right hand grip (all participants right-handed) on vertical aluminum handle
• According to ISO-Norm 10819 for testing of anti-vibration gloves

Transfer of shocks/vibration into the hand-arm system:
• Constant push force (50 N)
• Measurement of grip force

Room temperature/room conditions:
• Mean temperature range 24.4 - 25.6°C
Participants

A priori case number calculation (G-power)

(assumed medium effect size): 48 (12 per group)

Recruited participants:

54 voluntary healthy male participants (working age, non-smoker, no medical condition regarding the vascular, neurological and musculoskeletal system, no relevant medication, no occupational or recreational exposure to single shocks) – 2 participants excluded because of medication

Included participants:

52 (13 per group)

After randomization:

No statistically significant differences between groups regarding age and anthropometric values of the hand-arm-system)
Outcomes

- **Transfer values**
- accelerometer
- Wrist (foveola radialis)
- Elbow (lateral epicondylus)
- Shoulder (acromion)
- Z-direction

- **Vibration perception**
- D2 right/exposed hand
- test frequency of vibrosense: 125 Hz
- Results in dB

- **Skin temperature**
- ΔT dorsal finger surface
- D2 of the right hand
- three measurement points, mean value

Fig.: VibroSense (VSII); vibration perception threshold

Fig.: IR-measurement, Flir (i-phone)
Temperature difference before - after
Experimental setup

Randomized participants

- Questionnaire
- Grip force
- Pinch force
- EMG-maneuver

- Transfer factor
 - 1 s⁻¹
 - 4 s⁻¹
 - 20 s⁻¹
 - RS

- Temperature curve (baseline vs. after fourth exposure)

Changes in vibration perception threshold compared to baseline measurement
Transfer factors

Mean transmission

<table>
<thead>
<tr>
<th>Location</th>
<th>1 s⁻¹</th>
<th>4 s⁻¹</th>
<th>20 s⁻¹</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrist</td>
<td>0.90</td>
<td>0.85</td>
<td>0.75</td>
<td>0.55</td>
</tr>
<tr>
<td>Elbow</td>
<td>0.95</td>
<td>0.80</td>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>Shoulder</td>
<td>0.10</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Figure: Vibration perception threshold (after exposure sequence – baseline) in dB; D2 right hand (test frequency 125 Hz); exposure and control groups
Changes in skin temperature

Figure: IR skin temperature (mean values) in °C; dorsal D2 right hand; before and after each exposure sequence, exposure and control groups.
Changes in skin temperature

Figure: IR skin temperature (mean values) in °C; dorsal D2 right hand; before and after each forth exposure sequence, exposure and control groups
Correlations: exposure parameters - outcomes

<table>
<thead>
<tr>
<th></th>
<th>IR-Temp 1 s⁻¹</th>
<th>IR-Temp 4 s⁻¹</th>
<th>IR-Temp 20 s⁻¹</th>
<th>IR-Temp RS</th>
<th>VPT_1 1 s⁻¹</th>
<th>VPT_4 1 s⁻¹</th>
<th>VPT_20 1 s⁻¹</th>
<th>VPT_RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>impact_1s_flath_rms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x+</td>
</tr>
<tr>
<td>impact_1s_flath_rmq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact_1s_wh_rms</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact_1s_wh_rmq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact_3s_flath_rms</td>
<td></td>
<td></td>
<td>x</td>
<td>x+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact_3s_flath_rmq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact_3s_wh_rms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact_3s_wh_rmq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j_hf_rms</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sc_h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf_h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vsl_1s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vsl_3s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>full_wh_rms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x+</td>
<td></td>
</tr>
<tr>
<td>full_flath_rms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>full_wh_rmq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>full_flath_rmq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf_h_shaker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sc_h_shaker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j_fh_rms_shaker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vsl_shaker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ahfV6_full_w_s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aRWMS_full_w_s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peak_w_s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary/discussion/further thoughts

• **Transmission rate:**
 - Accelerometer vs. impedance
 - Conspicuous in comparison to other shock repetition rates: 4 s⁻¹
 - Random signal: decrease through forearm

• **Vibration perception threshold:**
 - Good practicality, depending on patient cooperation
 - Physiological effects depending on repetition rate, type of exposure
 - Significant effects more likely with increasing dose
 - Increase caused by spectrum vibration the higher, the lower the prior repetition rate – order of different exposures might be of interest

• **IR-Temperature:**
 - Good measurement practicality, digital solutions for mean values beneficial
 - Short term physiological effect depending on repetition rate, type of exposure
 - Significant decrease after 20 min exposure to single shocks, but not after 20 min exposure to vibration exposure – epidemiological evidence for vibration exposure – medium term effects
Some references

Thanks goes to

• participants
• cooperation partners
• sponsors
• practice partners

• and to you for your attention.